
1

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

Programming Without a Call Stack:
Event-driven Architectures

Gregor Hohpe | Google

www.eaipatterns.com

1

Who's Gregor?
Distributed systems, enterprise integration,
service-oriented architectures

MQ, MSMQ, JMS, TIBCO, BizTalk, Web Services

Write code every day. Share knowledge through
patterns.

Integration
Patterns
Microsoft
Press

Enterprise
Integration
Patterns
Addison-Wesley

SOA
Experten-
wissen
dpunkt Verlag

Enterprise
Solution
Patterns
Microsoft
Press

Best
Software
Writing I
APress

eaipatterns.com
• Patterns
• Articles
• Blog

2

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

2

Agenda

It's All About Coupling

Events Everywhere

Event-driven Architectures

Developing in an EDA

Case Study: Building an EDA in JavaTM

3

In A Connected World It's All About
Coupling

"Measure of dependency between components"

3

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

4

Dynamic Composability

"The ability to build new things from existing pieces."

5

"The lines are becoming boxes now."

Interaction Takes Center Stage

-- Ralf Westphal

4

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

6

The World is Full of Events

New Order

Address
Changed

Credit Card
ExpiredPayment

Declined

E-mail
BouncedOrder

Entry
Mail

Gateway

Ware
house

Event
Cloud

Web
Site

Inventory
Low

Shipping
PartnerTruck

Delayed

Financial
System

7

Event-Driven Architecture (EDA)

Distributed processing, no central control.

Nodes respond to incoming events and publish
events in response.

Event channels transport events from one node to the
next, usually asynchronously (sender does not wait).

Composition through channels.

NodeChannelEvent

5

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

8

EDA Defining Qualities
Timeliness. Publish events as they occur
instead of waiting for the next batch cycle.

Asynchrony. The publishing system does not
wait for the receiving system(s) to process the
event.

Fine Grained. Publish single events as
opposed to large aggregated event.

Ontology. A nomenclature to classify and
express interest in certain groups of events.

Complex Event Processing. Understanding
the relationships between events, for example
aggregation and causality.

AA
Queue

BB
Event

AA

Orders

On-Line

NewUpdated

AA

9

Composition via Channels

Nodes communicate via Channels

Sender and receiver need to agree to a common
channel. This is a form of coupling.

Sender and receiver have to decide which channel is
“right”. The burden can be shifted between sender
and receiver.

Channel namespace provides some structure.

System
B

System
A publish

Channel X

subscribe

6

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

10

Channel Naming and Semantics

Target component

Action / Operation

Document

Event

Credit
Service

Order
Entry

CreditService

VerifyCreditCard Credit
Service

Order
Entry

Credit
Service

Order
Entry

PaymentInfo

Credit
Service

Order
Entry

OrderReceived

11

How Do A and B Connect?

Channel Name / Instance
• Common in message queue systems.

• Limited expressiveness.

Topic Hierarchy
• Allows wildcard subscription

• Requires mapping of topic space onto a
tree. Forces prioritization.

Content-based
• Flexible, but difficult to implement

efficiently in widely distributed systems.

Orders

On-Line

NewUpdated

MessageQueue q = new
MessageQueue(“foo");

q.Send(“Msg”);

Channel.Subscribe(
“/element/foo=‘bar’”
);

Structured

Unstructured

7

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

12

Composition Strategies
Implicit Composition Explicit Composition

A

B

channel = Channel.byName(“orders”);
channel.publish(message);

channel = Channel.byName(“orders”);
channel.publish(message);

channel = Channel.byName(“orders”);
channel.subscribe(eventHandler);

channel = Channel.byName(“orders”);
channel.subscribe(eventHandler);

orders

A

B

A(Channel ch) { this.channel = ch; }
…
channel.publish(message);

A(Channel ch) { this.channel = ch; }
…
channel.publish(message);

B(Channel ch) { this.channel = ch; }
…
channel.subscribe(eventHandler);

B(Channel ch) { this.channel = ch; }
…
channel.subscribe(eventHandler);

“Composer”

Channel

Channel

<<create>>

13

Event Collaboration

RequestFor
Address

Order
Management

Address

SendShipment

Customer
Management

Shipping

Order

Order
Management

Address
Changed

Customer
Management

Shipping

Order

Multiple Components work together by communicating with each other by
sending events when their internal state changes.

Request
Collaboration

Event
Collaboration

(Fowler)

8

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

14

Event Collaboration

Adding Consumers is Side-Effect Free
• Debugging / logging / sniffing

• Parallel implementations

Simple components, more complex interactions

Robust against unstable connections

Can be difficult to manage and /or debug
• Need to understand relationship between events

• Shift burden from design-time to run-time

Components may operate on stale data

15

Event-sourced Systems

Capture all changes to an application state as a
sequence of events. (Fowler)

Domain
Objects

Event Bus

Event
Log

Local
State

State
Changes

Persisted
State
(Snapshot)

9

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

16

Event-sourced Systems

More than an event log or "temporal database"

Rebuild state based on events by re-executing
behavior

Temporal Query
• Determine application state at specific point in time

Event replay
• Run "what if" scenarios or corrections to past events

Limitation: code changes

17

Composite Events Processing

Understand causality

Some events are the result a
of a sequence of events

CEP = Complex Event Processing

Pattern matching languages
can be challenging Aggregation

Causality

10

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

18

Case Study – Existing System

Compute statistics based on responses to on-line
questionnaires
Responses stored in database
At the end, stored procedure computes “scores” based on
user responses
• Load on RDBMS
• Single thread, monolithic, synchronous
• Poor response time at end of user session

Goal: scalable, extensible architecture

On-line
DB

On-line
DB

Copy
Proc
Copy
Proc

Report
DB

Report
DB

Compute
Proc

Compute
Proc

FrontEndFrontEnd
A
B
C

UI Client

19

Case Study – New Architecture

Decompose logic into individual “calculators”

Calculators precompute results as response events
arrive

Channels connect calculators

Calculators do not updates database

Persist results into database once all scores computed

Pure Java (1.4) implementation

LogLog

FrontEndFrontEnd DBDBPersistencePersistence
A
B
C

UI Client
Event-driven
Calculators

11

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

20

Design Decisions
Point-to-Point vs. Publish-Subscribe Channels

Distributed vs. Distributable

Asynchronous vs. One-Way

Technology Specific vs. Technology Neutral

Explicit vs. Implicit Composition

Channel Naming “ontology”
• String match
• Hierarchy
• Content-based

Automated Dispatch vs. Manual Dispatch

(Class Hierarchy)

21

Implementation

Multiple calculators subscribe to abstract Channel

Channel stores subscribers by event type (hierarchy)

For each incoming event, channel looks up all subscribers for the
event type and its superclasses

For each subscribing class, figure out the overriding onEvent method
with the most specific matching argument

public interface Channel {

public void send(Event event);

public void subscribe(EventRecipient recipient,
Class eventClass);

}

Marker
Interface
Marker

Interface

12

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

22

Subscription / Dispatching

Class SomeEvent extends Event {}
class SubEvent1 extends SomeEvent {}
class SubEvent2 extends SomeEvent {}

class SomeSubscriber {
public SomeSubscriber {

channel.subscribe(SomeEvent.class);
}

public void onEvent (Event e) {}

public void onEvent (SubEvent1 se) {}
}

SomeEvent

SubEvent1 SubEvent2

SubEvent2
invoke

Event

SubEvent1
invoke

No
invocationEvent

Incoming
Event

Event
Hierarchy

23

Channel Implementation
public void send(Event event) {

Set<EventRecipient> subscribers =

getSubscribersForEventTypeAndItsSuperTypes(event.getClass());

for (EventRecipient recipient : subscribers) {

EventProcessorHelper.invokeEventHandler(event, recipient);

}

}

Map<Class, Set<EventRecipient>> subs;

Set<EventRecipient> getSubscribersForEventTypeAndItsSuperTypes

(Class eventClass) {

Set<EventRecipient> allSubscribers = new HashSet<EventRecipient>();

for (Map.Entry<Class, Set<EventRecipient>> entry : subs.entrySet()) {

Class subscriberEventClass = entry.getKey();

if (subscriberEventClass.isAssignableFrom(eventClass)) {

allSubscribers.addAll(entry.getValue());

}

}

return allSubscribers;

}

13

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

24

Channel Implementation (Cont'd)
boolean invokeEventHandler(Event event, EventRecipient recip)

{

for (Class eventClass = event.getClass();

eventClass != null;

eventClass = eventClass.getSuperclass()) {

Method eventHandler = recip.getClass().getMethod

("onEvent", new Class[]{eventClass});

try {

eventHandler.invoke(recip, new Object[] {event});

return true;

} catch (…) {…}

if (Event.class.equals(eventClass))

return false;

}

return false;

}

25

Channel Behaviors
public void testEachSubscriberReceivesMessage() {…}

public void testSubscribeTwiceReceiveOnce() {…}

public void testBaseClassSubscriberReceivesDerivedClassEvents() {…}

public void testSubscribingForNonEventTypeThrows() {…}

public void testInvokesExactlyMatchingMethodForBaseEventType() {…}

public void testInvokesExactlyMatchingMethodForEventSubType() {…}

public void testDoesNothingForOverlySpecificEventHandler() {…}

public void testInvokesMostSpecificMethodIfBothAreAvailable() {…}

14

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

26

Cool Things

Testing components in isolation

Publish-subscribe enables adding rather than replacing

Replay of events to recover transient state

Tracing / logging trivial, almost aspect-like

public class DebugCalculator extends Calculator
{

public DebugCalculator(Channel channel) {
super(channel);
channel.subscribe(this, Event.class);

}

public void onEvent(Event event) {
System.out.println("event = " + event);

}
}

Base class
of all events
Base class
of all events

27

(Tough) Lessons Learned

Must keep architectural big picture in mind
Integration testing more critical – less compile time
validation (the price of loose coupling)
Tools essential
• Event logger
• Dependency visualization (“reverse MDA”)

Shared state not always avoidable. Can lead to hidden
dependencies
Make minimum necessary assumptions about
sequence of events
Loosely coupled systems harder to diagnose

15

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

28

Side-By-Side

Top-down

Design-time composition

Sequential

Synchronous

Predictive

Transactional
(Pessimistic)

Centralized state

Error handling simple

Bottom-up

Run-time composition

Parallel

Asynchronous

Reactive

Compensation / Retry
(Optimistic)

Distributed state

Error handling more complex

Diagnostics more complex

Call Stack Event-Driven

29

16

Programming without a Call Stack - Event-driven Architectures W-JAX 2007

30

Enterprise Integration Patterns
• Addison-Wesley, 0-321-20068-3

www.eaipatterns.com
• Article: Programming without a

Call Stack

• Blog ("Ramblings")

http://www.martinfowler.com/eaaDev/EventCollaboration.html

http://www.martinfowler.com/eaaDev/EventSourcing.html

For More Information

