
Enterprise Integration Patterns

Asynchronous Messaging Architectures
in Practice

Gregor Hohpe



2

The Need for Enterprise Integration
Isolated Systems• More than one application (often 

hundreds or thousands)
– Single application too hard and inflexible
– Vendor specialization
– Corporate politics / organization
– Historical reasons, e.g. mergers

• Customers see enterprise as a 
whole, want to execute business 
functions that span multiple 
applications

Unified Access



3

Integration Challenges
• Networks are slow
• Networks are unreliable
• No two applications are alike
• Change is Inevitable
• Plus…

– Inherently large-scale and complex
– Limited control over entities / applications
– Far-reaching implications, business critical
– Intertwined with corporate politics
– Few standards exist, still evolving



4

Loose Coupling
• Coupling = Measure of dependencies between 

applications:
– Technology Dependency
– Location Dependency
– Temporal Dependency
– Data Format Dependency

• Waldo et al, 1994:
– “Objects that interact in a distributed system need to 

be dealt with in ways that are intrinsically different 
from objects that interact in a single address space

Get Credit ScoreSystem

A

System

A

System

B

System

B740

RPC-Integration



5

Message-Oriented Middleware
Remove location 
dependencies
Remove temporal 
dependencies
Remove data format 
dependencies

• Channels are separate 
from applications

• Channels are 
asynchronous & reliable

• Data is exchanged in 
self-contained messages

System
A

System
A

System
B

System
BChannel

Message

Loosely coupled integration enables independent variation



6

Thinking Asynchronously
Order Mgmt Shipping Order Mgmt Shipping

Inventory InventoryWeb Site Web Site
New Order New Order

Confirm

New Order

Confirm

Idle

New Order

Confirm

Confirm

Synchronous Asynchronous



7

Asynchronous Messaging Architectures
• The emerging architectural style of the new 

millennium

MainframeMainframe

Client-ServerClient-Server

Distr. ComponentsDistr. Components

ServicesServices

Async. MessagingAsync. Messaging

70ies 80ies 90ies 00s



8

Many Products & Implementations
• Message-oriented middleware (MOM) 

– IBM WebSphere MQ
– Microsoft MSMQ
– Java Message Service (JMS) Implementations 

• EAI Suites
– TIBCO, WebMethods, SeeBeyond, Vitria, ...

• Asynchronous Web services
– WS-ReliableMessaging, ebMS
– Sun’s Java API for XML Messaging (JAXM)
– Microsoft’s Web Services Extensions (WSE)

HOTHOT

The Underlying Design Principles Are the Same!



9

Message-Oriented Integration
1. Transport messages ApplicationApplicationApplicationApplication

2. Design messages

3. Route the message to 
the proper destination

ApplicationApplication

4. Transform the message 
to the required format

5. Produce and consume 
messages

ApplicationApplicationApplicationApplication

ApplicationApplication

6. Manage and Test the 
System



10

Integration Patterns
Channel Patterns1. Transport messages

Message Patterns2. Design messages

Routing Patterns3. Route the message to 
the proper destination

Transformation Patterns4. Transform the message 
to the required format

Endpoint Patterns5. Produce and consume 
messages

ApplicationApplication

Management Patterns6. Manage and Test the 
System



11

“Hello, Asynchronous World”
Consumer ProviderRequest

• Service Provider and Consumer
• Request-Reply (similar to RPC)
• Two asynchronous Point-To-Point Channels
• Channels are unidirectional
• Separate request and response messages

Request Channel

Reply Channel
Reply



12

Multiple Consumers 
ProviderRequests Requests

Request Channel
Consumer

1
Consumer

1

??Reply Channel 1
Consumer

2
Consumer

2 Reply Channel 2
Replies

• Each consumer has its own reply queue
• How does the provider know where to send the reply?

– Could send to all consumers very inefficient
– Hard code violates principle of service



13

Pattern: Return Address

Consumer
1

Consumer
1

RepliesConsumer
2

Consumer
2

Request Channel

Reply Channel 1

Reply Channel 2

• Consumer specifies Return Address
• Service provider sends reply message to specified 

channel
• Return Address can point to a component different from 

the consumer chaining

Reply
Channel 1

Reply
Channel 2 Provider



14

Multiple Service Providers
Provider 1Provider 1

ConsumerConsumer Provider 2Provider 2
Request Channel

Reply Channel

• Request message can be consumed by more than one 
service provider

• Point-to-Point Channel supports Competing Consumers, 
only one service receives each request message

• Channel queues up pending requests



15

Multiple Service Providers

Reply 1

• Messages can be 
processed by different 
consumers 
– Competing Consumers 

(load balancing)
– Content-Based Router 

• This causes messages to 
get out of sequence

Service 1
(slow)

Request 1

Service 2
(fast)Consumer

Request 2

Reply 2

• How to match request and reply messages?
– Only send one request at a time very inefficient
– Rely on natural order bad assumption



16

Pattern: Correlation
1

Consumer Message
Identifier Provider 1Provider 11 2

• Equip each message with a unique identifier
– Message ID (simple, but has limitations)
– GUID (Globally Unique ID)
– Business key (e.g. Order ID)

• Provider copies the ID to the reply message
• Sender can match request and response

2 Provider 2Provider 2
Request Channel

1 2

12

Response Channel

12 12

Correlate
Request & 

Reply

Correlation
Identifier



17

Routing Pattern: Message Router
• How can we decouple individual processing steps so 

that messages can be passed to different components 
depending on some conditions? 
– Different channels depending on message content, run-time 

environment (e.g. test vs. production), …
– Do not want to burden sender with decision (decoupling)

“New
Order”

Widget
Inventory

Gadget
Inventory

• Use a special component, a Message Router, to route 
messages from one channel to a different channel. 

Message
Router



18

Routing Pattern: Splitter
• How can we process a message if it contains multiple 

elements, each of which may have to be processed in a 
different way?
– Treat each element independently
– Need to avoid missing or duplicate elements
– Make efficient use of network resources

“New
Order”

• Use a Splitter to break out the composite message into a 
series of individual messages, each containing data related 
to one item.

Splitter Order
Item 1

Order
Item 2

Order
Item 3

Message
Router



19

Routing Pattern: Aggregator
• How do we combine the results of individual, but related 

messages back into a single message?
– Responses may be out of sequence
– Responses may be delayed

Aggregator Validated 
Order

Item 1 Item 2 Item 3

• An Aggregator manages the reconciliation of multiple, 
related messages into a single message
– Stateful component



20

Routing Pattern: Aggregator
• Correlation

– Which incoming messages belong together?
• Completeness Condition

– When are we ready to publish the result message?
• Wait for all
• Time out (absolute, incremental)
• First best

• Aggregation Algorithm
– How do we combine the received messages into a 

single result message?
• Single best answer
• Condense data (e.g., average)

• Time box with override
• External event

• Concatenate data for 
later analysis



21

Composed Pattern: Auction
• Send a message to a dynamic set of recipients, 

and return a single message that incorporates 
the responses. 

Auction

Request
For Quote

Vendor AVendor A

Vendor BVendor B

Pub-Sub
Channel

Quote

Aggregator
“Best”
Quote

Vendor CVendor C



22

Example: Combining Routing Patterns
• Receive an order, get best offer for each item 

from vendors, combine into validated order.
Auction

SplitterNew
Order

Quote Request
for each item

“Best” Quote
for each item

Vendor AVendor A

Vendor BVendor B

Pub-Sub
Channel

Quote

Aggregator

Vendor CVendor C

AggregatorValidated 
Order



23

Example Continued…
• Only vendors on the preferred vendor list get to 

bid on an item.

Vendor AVendor A

Vendor BVendor B

QuoteRecipient 
List

New
Order

AggregatorValidated 
Order

Quote Request
for each item

“Best” Quote
for each item

Aggregator

Vendor CVendor C

Enricher 

Preferred 
Vendor List 

Splitter



24

In Summary…
• Visual and verbal language to describe 

integration solutions
• Combine patterns to describe larger solutions
• No fancy tools – whiteboard or PowerPoint
• No vendor jargon
• Not a precise specification language

– (e.g., see OMG UML Profile for EAI)
• Not a new “methodology”
• Each pattern describes trade-offs and 

considerations not included in this overview



25

Resources
• Book (late October):

– Enterprise Integration Patterns
– Addison-Wesley, 0-321-20068-3

• Contact
– Gregor Hohpe
– ghohpe@thoughtworks.com

• Web Site
– http://www.eaipatterns.com
– Pattern catalog
– Bibliography, related papers
– info@eaipatterns.com

• www.thoughtworks.com


	Enterprise Integration PatternsAsynchronous Messaging Architecturesin Practice
	The Need for Enterprise Integration
	Integration Challenges
	Loose Coupling
	Message-Oriented Middleware
	Thinking Asynchronously
	Asynchronous Messaging Architectures
	Many Products & Implementations
	Message-Oriented Integration
	Integration Patterns
	“Hello, Asynchronous World”
	Multiple Consumers
	Pattern: Return Address
	Multiple Service Providers
	Multiple Service Providers
	Pattern: Correlation
	Routing Pattern: Message Router
	Routing Pattern: Splitter
	Routing Pattern: Aggregator
	Routing Pattern: Aggregator
	Composed Pattern: Auction
	Example: Combining Routing Patterns
	Example Continued…
	In Summary…
	Resources

